A GrGen.NET Solution of the Compiler Case for the Transformation Tool Contest 2011

Sebastian Buchwald and Edgar Jakumeit
Karlsruhe Institute of Technology (KIT)
buchwald@kit.edu

1 Introduction

The challenge of the Compiler Optimization Case [3] is to perform local optimizations and instruction selection on the graph-based intermediate representation of a compiler. The case is designed to compare participating tools regarding their performance. We tackle this task employing the general purpose graph rewrite system GrGen.NET (www.grgen.net).

2 What is GrGen.NET?

GrGen.NET is an application domain neutral graph rewrite system developed at the IPD Goos of Universität Karlsruhe (TH), Germany [1]. The feature highlights of GrGen.NET regarding practical relevance are:

Fully Featured Meta Model: GrGen.NET uses attributed and typed multi-graphs with multiple inheritance on node/edge types. Attributes may be typed with one of several basic types, user defined enums, or generic set, map, and array types.

Expressive Rules, Fast Execution: The expressive and easy to learn rule specification language allows straightforward formulation of even complex problems, with an optimized implementation yielding high execution speed at modest memory consumption.

Programmed Rule Application: GrGen.NET supports a high-level rule application control language, Graph Rewrite Sequences (GRS), offering logical, sequential and iterative control plus variables and storages for the communication of processing locations between rules.

Graphical Debugging: GrShell, GrGen.NET’s command line shell, offers interactive execution of rules, visualising together with yComp the current graph and the rewrite process. This way you can see what the graph looks like at a given step of a complex transformation and develop the next step accordingly. Or you can debug your rules.

User Manual: The GrGen.NET User Manual guides you through the various features of GrGen.NET, including a step-by-step example for a quick start.
3 Constant folding

The first task is to perform constant folding. Constant folding transforms operations which have only Const operands into a Const itself, e.g. to transform 1 + 2 into 3. This is a local optimization requiring only rules referencing local graph context.

Due to massive time constraints we were not able to give a self contained paper for this solution until the deadline; we are forced to hint readers at our solution [2] of the Hello World! case [4] for an introduction into the language constructs used.

3.1 Driver and data flow

Constant folding is carried out from the main/driver sequence given in Figure 1, which performs inside a main loop in each step i) first constant folding along data flow with a wavefront algorithm, and then ii) control flow folding together with clean-up tasks.

```xgrs
  ( [collectConstUsers(dummy, now)] ;>
    (wavefront(now, next) ;> now.clear() ;> tmp=now ;> now=next
      ;> next=tmp ;> isEmpty=now.empty() ;> !isEmpty)* ;>
    [foldAssociativeAndCommutative] ;>
    (foldCond+ | removeUnreachablePhiOperand+ | removeUnreachableBlock+ | removeUnreachableNode+)* ;>
    fixEdgePosition* ;>
    (mergeConsts+ | removeUnusedNode+ | mergeBlocks+)*
  )*

```

Fig. 1. Driver sequence for constant folding.

Initially two empty storage sets are created for the wavefront algorithm: now which will contain the users of constant nodes which are visited in this step and next which will contain the users of constant nodes which will be visited in the next step. Then the main loop is entered. There the rule `collectConstUsers` is executed on all available matches, collecting all users of Const nodes available in the graph into the storage set now (the dummy variable was never assigned and the `collectConstUsers` rule was specified to search for a valid entity if the first parameter is undefined). This is the initial stone thrown into the water of our program graph. From it on a wavefront is iterated following the data flow edges until it comes to a halt because no new constants were created any more. A wavefront step is encapsulated in the subsequence `wavefront` given in Figure 2; it visits the operations given in the set given as its first argument, and adds the operations which are users of the constants it created newly with constant folding.
def wavefront(constUsersNow: set<FirmNode>,
 constUsersNext: set<FirmNode>) {
 for {
 cu:FirmNode in constUsersNow;
 ((c)=foldNot(cu) || (c)=foldCmp(cu) ||
 (c)=foldBinary(cu) || (c)=foldPhi(cu) & false
) & [collectConstUsers(c, constUsersNext)]
 } ;> constUsersNow.clear()
}

Fig. 2. Wavefront step for constant folding.

into the set given as its second argument. After this subsequences was called on
the now argument the now and next sets are swapped (the set referenced by now
is cleared, now is assigned the set referenced by the next, and next is assigned
the empty set previously pointed to by now). The wavefront iteration is stopped
when the now set of the next iteration step is empty.

Let us have a look at a wavefront step defined by the subsequence given in
Figure 2: it iterates with a for loop over the users of constants contained in
the storage set parameter constUsersNow, binding them to an iteration vari-
able cu of type FirmNode. This constant is used as input to the rules fold-
Not, foldCmp, foldBinary and foldPhi really doing the folding in case all of the
arguments to the operations they handle are constant. They return the newly
created constant by folding, the rule collectConstUsers then adds all users of
this constant to the constUsersNext storage set.

Figure 3 shows our constant folding rule for Binary operations. It takes the
node with the Const operand as parameter and returns the folded Const. The
rule matches both Const operands and has an alternative statement that
contains one case for each binary operation (except Cmp). Within the cases the
value of the new Const is computed. Finally, at the end of rule execution, the
exec statement relinks the users of the Binary to the newly created Const and
deletes the Binary from the graph.

For the constant folding of a Cmp we use a separate rule shown in Figure 4.
It uses a complex evaluation to compute the resulting value of the Const.

The constant folding for unary Not nodes is straight forward and omitted;
n-ary Phi nodes are of interest again. Figure 5 shows the corresponding rule. It
first matches the Phi node and one Const operand and then iteratively edges to
the same operand and to the Phi itself. If this covers all edges we can replace
the Phi with the Const operand.
rule foldBinary(b: Binary<FirmNode>) : (Const)
{
 if{ typeof(b) != Cmp; }

 startBlock: StartBlock;
 b -df0: Dataflow -> c0: Const;
 b -df1: Dataflow -> c1: Const;
 hom(c0, c1);
 if{ df0.position == 0 && df1.position == 1; }

 alternative
 foldAdd
 if{ typeof(b) == Add; }

 modify
 eval { c.value = c0.value + c1.value; }

 }

 modify
 c: Const -startBlockEdge: Dataflow -> startBlock;
 eval { startBlockEdge.position = -1; }
 exec([relinkUser(b, c)]; deleteNode(b));
 return(c);
}

Fig. 3. Rule for folding Binary nodes.
rule foldCmp((Cmp<FirmNode>)) : (Const)
{
 startBlock:StartBlock;
 cmp -blockEdge:Dataflow->;
 cmp -df0:Dataflow-> c0: Const;
 cmp -df1:Dataflow-> c1: Const;
 hom(c0, c1);
 if{ df0.position == 0 && df1.position == 1; }

 modify {
 delete(blockEdge, df0, df1);
 c: Const<cmp>;
 c -startBlockEdge:Dataflow-> startBlock;
 eval {
 c.value = (cmp.relation == Relation::TRUE ||
 cmp.relation == Relation::GREATER
 && c0.value > c1.value ||
 cmp.relation == Relation::EQUAL
 && c0.value == c1.value ||
 cmp.relation == Relation::GREATER_EQUAL
 && c0.value >= c1.value ||
 cmp.relation == Relation::LESS
 && c0.value < c1.value ||
 cmp.relation == Relation::NOT_EQUAL
 && c0.value != c1.value ||
 cmp.relation == Relation::LESS_EQUAL
 && c0.value <= c1.value
) ? 1 : 0;
 }
 startBlockEdge.position = -1;
 }
 return(c);
}

Fig. 4. Rule for folding Cmp nodes.
rule foldPhi(\phi:\text{Phi<\text{FirmNode}>}) : (\text{Const})
{
 \text{startBlock} : \text{StartBlock};
 \phi - \text{blockEdge} : \text{Dataflow} \rightarrow \text{block} : \text{Block};
 \phi - e_0 : \text{Dataflow} \rightarrow c_0 : \text{Const};

 \text{iterated}
 {
 \phi - e : \text{Dataflow} \rightarrow c_0;

 \text{modify}
 {
 \text{delete}(e);
 }
 }

 \text{iterated}
 {
 \phi - e : \text{Dataflow} \rightarrow \phi;

 \text{modify}
 {
 \text{delete}(e);
 }
 }

 \text{negative}
 {
 c_0;
 \text{block};
 \phi - : \text{Dataflow} \rightarrow : \text{FirmNode};
 }

 \text{modify}
 {
 \text{delete}(\text{blockEdge}, e_0);
 c : \text{Const<\phi>};
 c - \text{startBlockEdge} : \text{Dataflow} \rightarrow \text{startBlock};

 \text{eval}
 {
 c. value = c_0. value;
 \text{startBlockEdge}. position = -1;
 }

 \text{return}(c);
 }
}

\textbf{Fig. 5.} Rule for folding Phi nodes.
3.2 Control flow and cleanup

Let us mentally return to the driver sequence in Figure 1; after the wavefront which folded alongside data flow has collapsed, execution continues with folding condition nodes at the interface of data flow to control flow and with folding control flow proper (jumps and blocks). In addition there are some clean up task left to be executed. If no control flow was folded leading to further data flow folding possibilities, the main loop is left.

```
rule foldCond
{
  startBlock:StartBlock;
  cond:Cond -blockEdge:Dataflow->;
  cond -df0:Dataflow-> c0:Const;
  falseBlock:Block -falseEdge:False-> cond;
  trueBlock:Block -trueEdge:True-> cond;
  hom(falseBlock, trueBlock);

  alternative {
    TrueCond {
      if { c0.value == 1; }

      modify {
        delete(falseEdge);
        -jmpEdge:Controlflow<trueEdge>->;
      }
    }
    FalseCond {
      if { c0.value == 0; }

      modify {
        delete(trueEdge);
        -jmpEdge:Controlflow<falseEdge>->;
      }
    }
  }

  modify {
    delete(df0);
    jmp:Jmp<cond>;
  }
}
```

Fig. 6. Rule for folding Cond nodes.

The rule shown in Figure 6 is responsible for folding Conditional jumps. Depending on the value of the constant, either the edge of type True gets deleted
and the edge of type \texttt{False} retyped to an edge of type \texttt{Controlflow}, or the edge of type \texttt{False} gets deleted and the edge of type \texttt{True} retyped to an edge of type \texttt{Controlflow}. Since there is only one jump target left, we also retype the conditional jump to a simple jump of type \texttt{Jmp}.

Due to the folding of condition jumps, there may be unreachable blocks which can be deleted. We use two rules to remove unreachable code: the rule shown in Figure 7 deletes unreachable Blocks, the rule shown in Figure 8 deletes nodes without a Block.

```
rules removeUnreachableBlock
{  
    block: Block\StartBlock;

    negative {  
        block -cfgEdge: Controlflow->;
    }

    modify {  
        delete(block);
    }
}
```

\textbf{Fig. 7.} Rule for removing unreachable Blocks.

```
rules removeUnreachableNode
{  
    n: FirmNode\Block;

    negative {  
        n -blockEdge: Dataflow-> : Block;

        if {  
            blockEdge.position == -1; }
    }

    modify {  
        delete(n);
    }
}
```

\textbf{Fig. 8.} Rule for removing nodes without a Block.
Furthermore, we also need to adapt Phi nodes if they have an operand without a Controlflow counterpart in the Block. Figure 9 shows the corresponding rule that matches a Phi and deletes an operand that has no Controlflow counterpart. After the deletion we fix the position of all edges using the fixEdgePosition rule.

```
rule removeUnreachablePhiOperand
{
  phi:Phi - blockEdge:Dataflow -> block:Block;
  phi - operandEdge:FirmEdge -> operand:FirmNode;

  negative {
    block - cfgEdge:Controlflow ->;

    if { cfgEdge.position == operandEdge.position; }
  }

  modify {
    delete(operandEdge);
  }
}
```

Fig. 9. Rule for removing nodes without a Block.

The solution contains two rules that simplify the graph:

- **removeUnusedNode** Removes a node that is not used, i.e. that has no incoming edges. This rule is similar to the removeUnreachableBlock rule.

- **mergeBlocks** If there is a Block block1 with only one outgoing edge of type Controlflow and this edge leads to a node of type Jmp contained in Block block2, then we remove the Jmp and merge block1 and block2. This rule is able to remove the chain of “empty” Blocks that occurs in the running example of the case description.

The verifier mentioned in the case description was implemented with the tests in Verifier.gri, called from a subsequence verify defined in Verifier.grsi; the subsequence is used with the statement validate xgrs verify before and after the transformations checking the integrity of the graph.
3.3 Folding More Constants

Figure 10 shows a rule that fold constants for the term \((x * c1) * c2\) where \(*\) is an associative and commutative operation. This rule enables us to solve the test cases provided by the GReTL solution. In contrast to the GReTL rule, this rule does not change the structure of graph.

\[
\text{rule foldAssociativeAndCommutative} \\
\{ \\
\text{bin0:Binary; bin0 -:Dataflow-> block:Block; bin0 -binEdge:Dataflow-> bin1:typeof(bin0); bin0 -constEdge:Dataflow-> c0:Const; bin1 -:Dataflow-> operand:FirmNode\Block; bin1 -:Dataflow-> c1:Const; hom(c0, c1); if { bin0.associative && bin0.commutative; }} \\
\text{modify} \\
\text{delete(binEdge, constEdge);} \\
\text{bin:typeof(bin0); bin -blockEdge:Dataflow-> block; bin -left:Dataflow-> c0; bin -right:Dataflow-> c1; bin0 -binLeft:Dataflow-> operand; bin0 -binRight:Dataflow-> bin;} \\
\text{eval} \\
\text{blockEdge.position = -1; left.position = 0; right.position = 1; binLeft.position = binEdge.position; binRight.position = constEdge.position; } \\
\} \\
\}
\]

Fig. 10. Rule for constant folding of associative and commutative operations.

4 Instruction Selection

Instruction selection is the task that transforms the IR (intermediate representation) into a target-dependent representation (TR). It can be considered as some kind of model transformation.
The TR supports immediate instructions, i.e. a Const operand can be encoded within the instruction. Our solution consists of one rule per target instruction which means we have at most two rules for each IR operation: one for the immediate variant and one for the variant without immediate.

Before we start matching all immediate operations, we apply the rule shown in Figure 11. It matches commutative operations with a Const operand at position 0, but not at position 1, and then exchanges these operands to ensure that the constant operand is at position 1. Thus, the rule ensures deterministic behaviour in case of two constant operands.

Figure 12 shows exemplarily the rule that creates an AddI operation. It retypes the Add to an TargetAddI, deletes the Dataflow edge to the constant and stores the value of the Const node in the value attribute. Since the other rules for immediate operations are very similar, we omit them here.

Instead we want to introduce the rule for creating TargetLoad given in Figure 13. Again, we retype the original operation to the corresponding target operation. Since Load is a memory operation, we also need to set the volatile attribute.

The instruction selection rules are applied by the sequence shown in Figure 14. The [rule] operator matches all occurrences of the given rule. Thus, we first create all immediate operations and then non-immediate operations for the remaining nodes.
rule ToTargetAddI
{
a: Add -df: Dataflow -> c: Const;
if { df.position == 1; }
modify {
ta: TargetAddI <a>;
delete(df);
eval {
ta.value = c.value;
}
}
}

Fig. 12. Rule for a TargetAddI operation.

rule ToTargetLoad
{
l: Load;
modify {
t: TargetLoad <l>;
eval { t.volatile = l.volatile; }
}
}

Fig. 13. Rule for a TargetLoad operation.

xgrs [NormalizeConst]
xgrs [ToTargetLoad] | [ToTargetStoreI] | [ToTargetAddI] | [ToTargetSubI] | [ToTargetMulI] | [ToTargetDivI] | [ToTargetModI] | [ToTargetAndI] | [ToTargetOrI] | [ToTargetEorI] | [ToTargetShlI] | [ToTargetShrI] | [ToTargetShrsI] | [ToTargetCmpI]

xgrs [ToTargetJmp] | [ToTargetCond] | [ToTargetLoad] | [ToTargetStore] | [ToTargetNot] | [ToTargetAdd] | [ToTargetSub] | [ToTargetMul] | [ToTargetDiv] | [ToTargetMod] | [ToTargetAnd] | [ToTargetOr] | [ToTargetEor] | [ToTargetShl] | [ToTargetShr] | [ToTargetShrs] | [ToTargetCmp]

Fig. 14. Extended graph rewrite sequence for instruction selection.
5 Conclusion

We presented a GrGen solution for both tasks: constant folding as well as instruction selection. The performance for the largest GReTL test case – consisting of 27993 nodes and 55981 edges – is 6.3 seconds for constant folding and 111 milliseconds for instruction selection. For the largest test shipped with this case – consisting of 277529 nodes and 824154 edges – we need 11 seconds for constant folding and 1.2 seconds for instruction selection. The measurements were made using Ubuntu 11.04 and Mono 2.6.7 on a Core2Duo E6550 with 2.33 GHz.

References